

Findinating diagonal constraint:
Terminology: Let us call timed automate with diagonal conthaints

$$a_{0}$$
 "d. timed automate"
Theorem: For every d. timed automater us, there exists a
timed automaton (without diagonal conthaints) B st.
 $I(A) = L(B)$
 $x-y \leq \overline{z}$
 $x-y \leq \overline{z}$
 y
 y
 y
 y
 y
 y
 y
At where y' either use reach with a value s.t. $x-y \leq 5$
is thus.
 $y = y > 5$ (the constraint is falle)

The idea is to split q' into two:

$$(q, 1) \quad and \quad (q, 0)$$

$$f \quad 1$$

$$x - y \le 5 \quad is \ hrue \qquad x - y \le 5 \quad is \ hue \qquad (x - y < 5)$$

$$q_{1} \quad \frac{a}{2\pi 3} \quad q'$$

$$- \quad (q, 1) \quad \frac{a}{2\pi 3} \quad (q', 1)$$

$$x - y \le 5 \quad \dots \quad \infty \quad 0 \quad [-y \le 5]$$

$$- \quad (q, 0) \quad \frac{a}{2\pi 3} \quad (q', 1)$$

$$x = 0$$

$$y = 0 - y \le 5$$

$$- \quad q \quad \frac{q}{2y^{3}} \quad q'$$

$$(q_{1}, 1) \quad \frac{a \times 55}{2y^{3}} \quad (q', 1)$$

$$(q_{1}, 1) \quad \frac{a \times 55}{2y^{3}} \quad (q', 0)$$

- 1. Diagonal values do not change with time degree
- 2. Diagonal values change during rests.
- 3. Maintain the hutin y the diagonal constraint in the state
and give update rules based on the roots.
To climinate
$$x-y \leq c$$

Statue of B: (q, o) and $(q, 1)$
for each transition y d: $q \xrightarrow{q, 3}_{R} q^{1}$
we have the following transitions in B:
1) Suppose g does not contain $R \cdot y \leq c$:
- suppose heither a nor y is rest in R: $x \leq R$, $y \notin R$:
 $(q, b) \xrightarrow{q, 9}_{R} (q', b) = be \{o, 1\}$
- Suppose both n, y are rest: $X \in R, j \in R$.
 $(q, b) \xrightarrow{q, 3}_{R} (q', 1) = because $0 \leq c$
- suppose g is react in $R, x \notin R$:
 $(q, b) \xrightarrow{q, 3}_{R} (q', 1) = because $0 \leq c$
- Suppose g is react in $R, x \notin R$:
 $(q, b) \xrightarrow{q, 3}_{R} (q', 1) = because $0 \leq c$
- Suppose g is react $R, x \notin R$:
 $(q, b) \xrightarrow{q, 3}_{R} (q', 1) = because 0 \leq c$
- Suppose g is react $R, x \notin R$:
 $(q, b) \xrightarrow{q, 3}_{R} (q', 0) = \frac{q, 3}{\xi_{3}}$$$$

Suppose
$$x \in R$$
, $y \notin R$:
 $(q, b) \xrightarrow{a, g}_{\Xi \pi 3} (q', 1)$
 $(q, b) \xrightarrow{a, g}_{\Xi \pi 3} (q', 1)$
 $(q, b) \xrightarrow{a, g}_{\Xi \pi 3} (q', 1)$
Suppose g is q the form $g, n \pi \cdot y \leq c$:
 $(q, 0) \xrightarrow{a, g}_{\Xi}$
Replace g with g_1
 $(q, 1) \xrightarrow{a, g_1}$
 $(q, 1) \xrightarrow{a, g_2}$
 $(q, 2) \xrightarrow{a, g_2}$
 $(q, 2) \xrightarrow{a, g_2}$
 $(q, 2) \xrightarrow{a, g_2}$
 $(q$

In the final automation without diogonal constraints: (q, 0)1100) each bit is tracking one particular diagonal constraint - This construction gives an exponential blow-up to the number of state. ~ Is this blow-up unavoidable?

Diagonal constraints add exponential succinctnus: Construct a fainily of languages of, L2, Ls. s.f. For each In there is a d-timed automation In with 2 states and n transitions. However, every diagonal-free automation that at least 2ⁿ states. Language Ln: Simulate an 'n' bit counter: 0000 1000 0010 0 0 11 0 1 00 0101 0 1 10 ί. $\{(a^{2^n}, c) \mid c_1 < c_2 < c_5 \cdots < c_{2^n}\}$

a, increment c
a, increment c
Add extra clack to
creater that before
consecutive 'a's there is
non-zero time degre
c: a counter the noise a's so ther.

$$c = b_{n-1} \ b_{n-2} \cdots b_{a} \ b_{1} = 0$$

 $b_{3} = 0$?
 $b_{3} = 0$?
 $b_{3} = 0$?
 $b_{3} = 1 \ b_{2}^{-1} \cdots b_{n-1}^{-1}$
 $b_{3} = 0$?
 $b_{3} = 1 \ b_{2}^{-1} \cdots b_{n-1}^{-1}$
 $b_{3} = 0$?
 $b_{3} = 1 \ b_{2}^{-1} \cdots b_{n-1}^{-1}$
 $b_{3} = 0$?
 $b_{3} = 1 \ b_{2}^{-1} \cdots b_{n-1}^{-1}$
 $b_{3} = 0$?
 $b_{3} = 1 \ b_{2}^{-1} \cdots b_{n-1}^{-1}$
 $b_{3} = 0$?
 $b_{3} = 0 \ b_{2} = 1 \ b_{2}^{-1} \cdots b_{n-1}^{-1}$
 $b_{3} = 0 \ b_{3} = 0 \ contends \ co$

Every diagonal-free automation for In requires at least 2" states. Suppose there exists a diagonal-free automaton Bn with $< 2^n$ status accepting $d_n = \mathcal{E}(a^{2^n}, T) [T_1 < T_2 ... < T_n]$ h9 : By will have an accuping run on w. $(q_{0_1} v_{0}) \xrightarrow{2^{n}+1} (q_{1}, v_{1}) \xrightarrow{1/2^{n}+1} (q_{2_1} v_{2}) \xrightarrow{1/2^{n}+1} (q_{2_1}, v_{2_1})$ q₂₇ is a.c. Since there are $< 2^{n}$ status, some $q_{i} = q_{j}$ 9.' 2.' Claim: The run obtained by cutting the part between gi and gi is also a valid accepting non